skip to main content


Search for: All records

Creators/Authors contains: "Huang, Ling-yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The electronic and optical responses of an organic semiconductor (OSC) are dictated by the chemistries of the molecular or polymer building blocks and how these chromophores pack in the solid state. Understanding the physicochemical nature of these responses is not only critical for determining the OSC performance for a particular application, but the UV/visible optical response may also be of potential use to determine aspects of the molecular-scale solid-state packing for crystal polymorphs or thin-film morphologies that are difficult to determine otherwise. To probe these relationships, we report the quantum-chemical investigation of a series of trialkyltetrelethynyl acenes (tetrel = silicon or germanium) that adopt the brickwork, slip-stack, or herringbone (HB) packing configurations; the π-conjugated backbones considered here are pentacene and anthradithiophene. For comparison, HB-packed (unsubstituted) pentacene is also included. Density functional theory and G 0 W 0 (single-shot Green’s function G and/or screened Coulomb function W) electronic band structures, G 0 W 0 -Bethe–Salpeter equation-derived optical spectra, polarized ϵ 2 spectra, and distributions of both singlet and triplet exciton wave functions are reported. Configurational disorder is also considered. Furthermore, we evaluate the probability of singlet fission in these materials through energy conservation relationships. 
    more » « less
  2. Abstract

    Optoelectronic properties of anisotropic crystals vary with direction requiring that the orientation of molecular organic semiconductor crystals is controlled in optoelectronic device active layers to achieve optimal performance. Here, a generalizable strategy to introduce periodic variations in the out‐of‐plane orientations of 5,11‐bis(triisopropylsilylethynyl)anthradithiophene (TIPS ADT) crystals is presented. TIPS ADT crystallized from the melt in the presence of 16 wt.% polyethylene (PE) forms banded spherulites of crystalline fibrils that twist in concert about the radial growth direction. These spherulites exhibit band‐dependent light absorption, photoluminescence, and Raman scattering depending on the local orientation of crystals. Mueller matrix imaging reveals strong circular extinction (CE), with TIPS ADT banded spherulites exhibiting domains of positive or negative CE signal depending on the crystal twisting sense. Furthermore, orientation‐dependent enhancement in charge injection and extraction in films of twisted TIPS ADT crystals compared to films of straight crystals is visualized in local conductive atomic force microscopy maps. This enhancement leads to 3.3‐ and 6.2‐times larger photocurrents and external quantum efficiencies, respectively, in photodetectors comprising twisted crystals than those comprising straight crystals.

     
    more » « less